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A Solut ion Spectrum of  the Nonl inear  Schr6dinger 
Equation. II 
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It was shown in a previous communication that the nonlinear Schr6dinger 
equation exhibits a spectrum of  eigenfunctions of  the form ~ =  
~k' Ak '(c~ kx)-k'  and �9 = Yk' Bk,(cosh kx) -k'-I sinh kx, and the correspond- 
ing eigenvalues of  the energy are related to a band structure with a characteristic 
energy gap as a significant feature. In the present paper, it is shown that a further 

A kx) -k'-w2 spectrum exists exhibiting the general structure ~=Yk'=O k,(cosh 
and =Y~k'=0 Bk'(C~ kx)-k'-3/2 sinh kx and yielding also a band structure. 
An extension of  the solution spectrum to a nonlinear Klein-Gordon equation 
and a nonlinear Dirac equation does not imply essential difficulties, and the 
corresponding characteristic band structure has to be related to a mass spectrum. 

1. I N T R O D U C T I O N  

and 

The solitary wave solutions 

= A(cosh kx) -1 (1) 

xt' = B tanh kx (2) 

o f  the stationary nonlinear Schr6dinger equation 

h z 
E,I, + E--ram AV = ;~ I,vl=. (3) 

have been taken into consideration in many areas of physics, such as solid 
state and plasma physics (Auer, 1979; Kubo et aL, 1976; Satsuma and 
Yajima, 1974; Scott, 1973; Zakharov and Shabat, 1973), molecular and 
biophysics (Beaconsfield and Balanovski, 1984; Campbell and Peyrar, 1983; 
Carter, 1981; Davydov, 1976, 1979; Su et aL, 1980; Ulmer, 1988; Ulmer and 
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Hartmann, 1978), and the time-dependent version of equation (3) 
OXI , h 2 

ih + = x I,I, IZ , (4) 
Ot 2m 

and its relativistic extensions (e.g., a nonlinear type of Klein-Gordon 
equation) have also been studied with regard to the theory of measuring 
processes and elementary particle physics (Jackiw, 1977; Mielke, 1981; 
Mielnik, 1974; Barut, 1977). 

In connection with the role of equation (3) in quasiparticle concepts 
in solid state and molecular physics, it has been pointed out (Ulmer, 1988) 
that this equation is completely equivalent to the Ginzburg-Landau theory 
of phase transitions (Landau and Ginzburg, 1950; Ginzburg, 1955, 1958), 
where the Lagrange density is given by 

Le = ((~ [WI, 1= +/3 [,I,I 2 + r 1~t,[ 4) (5) 
This theory has been applied to superconductivity, and performing 6La = 0 
with respect to at'* yields equation (3); the parameters a,/3, y have to be 
chosen appropriately. The relation between the Ginzburg-Landau theory 
(5) and the BCS theory has been discussed in detail (Gorkov, 1958), and 
it appears to be justified to regard the Cooper pairs as a specific kind of 
soliton. Because of the importance of equation (3) in a rather wide field of 
actual (and potential) applications, I have presented (Ulmer, 1988) an 
analysis of a solution spectrum of equation (3) representing generalizations 
of the solutions (1) and (2). Thus, a spectrum of symmetric (L2-integrable) 
wave functions is given by 

(70 

~tTt M • ~t~ = • Ak~:M~(cosh kx)-2k'+/3 
k ' = / 3  

(6) 
E (/3 ) = - h Zk2/32/2m 

/3 = 1 ,2 ,3 , . . .  and M =  1 ,2 ,3 , . . .  

exhibiting the following additional properties: The degree of degeneracy is 
denumerably infinite (M = 1, 2, 3 , . . . ) ;  the plus sign stands for soliton and 
the minus sign for antisoliton solution; and for every/3 (/3 = 1, 2, 3 , . . . )  the 
permitted k values are restricted within upper and lower boundaries 

k2ax(/3) > k2> k2in(/3) (7) 

which actually can be related to a band structure. 
The antisymmetric (L2-integrable) solution spectrum is given by 

~M• ~ B~:M• kx) -~2k'-/3+" sinh /3 = 

k,=/3 (8) 

E(/3)=-h2k2/322m ( M = 1 , 2 , 3 , 4  . . . .  , ' /3=1,2,3 . . . .  ) 
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and the band structure condition (7) must also be valid with regard to the 
solution spectrum (8): k2max(fl) > k2> k~in(/3) (/3 = 1, 2, 3 , . . . ) .  

Thus, the band structure properties result from the convergence condi- 
tions of  the Leibniz criterion of conditionally convergent series, which is 
closely related to the bound state condition 1 < 0  implying sign Ak,= 
-sign Ak,+ 1 (Ulmer, 1988), and I shall return to this analysis in the sub- 
sequent investigation, where i present a further solution spectrum of 
equation (3) similar to (6) and (8) and also exhibiting band structure 
properties. However, before I continue this analysis, I should like to com- 
plete some aspects of the solutions (6) and (8). The solution manifold can 
b ;  ~xtended to t~r~e space coordinates, and the band structure condition 
(7) remains valid when the substitutions x-~(xl ,x2,  xa)=X and k-~ 
(k~, k2, k3) = k have been carried out, inducing expressions of the form 
(cosh kx) -k' in expansion (6) and (cosh kx) -k' sinh kx in expansion (8), 
whereby the energy E(fl) is now given by 

E(fl)=-h2k2/32/2m; kZ=k2=k2+k2+k2; k2max(/3) > k2 > k2mi,(fl) 
(9) 

However, the solution functions (6) and (8) are not the only L2-integrable 
expansions obeying equation (3), and it will be shown that the modifications 

= ~ Ak,(Cosh kx) -k'-1/2 (10) 
k ' = O  

and 

oo 

= ~ Bk,(cosh kx) -k'-3/2 sinh kx (11) 
k'=O 

also represent a solution spectrum of equation (3). Later it will be shown 
that other kids of expansions [e.g., on the basis of cosh kx) -1/3] do not exist. 

2. THE SOLUTION SPECTRUM OF THE EXPANSION 
xIt = ~ ' = o  Ak,(cosh k x )  - k ' - l / 2  

With the help of the ansatz (1), equation (3) takes the form 

g'o ~ Ak,(Cosh kx)-(k'+l/2) + crk 2 ~ Ak,(k' + l)2(cosh kx) -(k'+'/2) 
k ' = O  k'=O 

+~rk 2 ~ Ak,(k' + l)(k' + 3)(cosh kx) -(k'+s/2) 
k ' = O  

= Z AvApAr(cosh kx)-(a/2+p+q+r) 
p,q,r=O 

(12) 
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whereby we make use of  the substitutions ~o = E/A,  tr= h2/2mA, and 
U = crk 2. 

Equation (12) must be satisfied for arbitrary values of  the argument x, 
and this implies that the coefficients of  each power of  cosh kx occurring in 
equation (12) have to satisfy this equation. [This is also true for the previous 
solution functions (Ulmer, 1988), and therefore I do not repeat or reiterate 
the arguments.] Thus, equation (12) has to be analyzed with respect to each 
power of  (cosh k x ) - k ' - l / 2 .  " 

k' = 0 [(cosh kx) -1/2] implies the relations 

~oAo + �88 Ao = 0 

(A0 = arbitrary) and 

o r  

~o = -crk2/ 4 (13) 

E = - h 2 k 2 / 8 m  

k ' =  1 [(cosh kx) -3/2] implies the relation 

A1 = A3/2u (13a) 

because the energy has already been fixed by the relation (13). By considering 
the powers k ' = 2 , 3 , 4 , 5 , . . ,  in equation (12), the expansion coefficients 
A2, A3, . .  �9 of  (10) can be determined recursively in terms of Ao: Ao-> A1 --> 
A2--> A3 �9 �9 �9 --> A,.  Table I gives the expansion coefficients A,  up to the order 
n = 6. Thus, the general formation law A,  = A,  (Ao) is given by the recurrence 
formula 

An= ~ a2"+l -4p (2n+l -4p ) I - IP=~ (14) 

p=o 2"Un_2p2Pp! ( 2 n + 3 ) ( 2 n +  1) 

Table I. The A o Dependence of the Expansion Coefficients An (n = 0, 1,... ,  6) a 

n a,, ao u~ aau -l A~u -2 a7u -3 a9u -4 a~lu -5 Alau-6 

0 Ao 1 0 0 0 0 0 0 
1 A l 0 1/2 0 0 0 0 0 
2 A 2 1/23 0 1/22 0 0 0 0 
3 A3 0 3 / 2  4 0 1/23 0 0 0 
4 A4 7/27 0 5/25 0 1/24 0 0 
5 A 5 0 27/28 0 7/26 0 1/25 0 
6 A 6 33/2 l~ 0 55/29 0 9/27 0 1/26 

a U = k2h2/2mA. According to this table, A 6 is given by 

A6 = 33 Ao/21 o + 55A~/u229 + 9A9o/u427 + A~3/u62 ' .  
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where the following conditions must hold: 

M = n/2 if  n even 
(14a) 

M = (n - 1)/2 if n odd 

This formula is required for an analysis of  the convergence properties, and 
it can be constructed by an evaluation of equation (12), where the linear 
part of (3) is determined by the cubic term and, by that, the corresponding 
powers of the form (cosh kx) -(k'§ (k '=  0, 1, 2, 3 , . . . )  have to be mutually 
compared with regard to coefficients of the nonlinear contributions: 

linear contributions �9 (cosh kx)-l/2-k' 

= Y,p,q,r Az4qAr(cosh kx) -1/2-(l§247247 

where the condition p + q + r + 1 = k' must always hold. There is one combi- 
nation with p = q = r, whereas there are three combinations p = q # r (cyclic) 
and six combinations p # q # r # p  (cyclic). However, we have not yet 
defined Ao, because formula (14) only expressed the Ao dependence of A, 
with n -> 1, and Ao can be defined by the additional assumption of  a norm. 
In order to be in agreement with the basis principles of (linear) quantum 
mechanics, I assume that the L2-norm represents an adequate frame for 
the determination of Ao: 

but I point out that the introduction of this norm implies the same difficulties 
as verified in the previous publication (Ulmer, 1988) with regard to the 
expansions (6) and (8), because the consideration of convergence problems 
now becomes intractable. The computation of the integrals Sin§ = 
S+~ (cosh k x ) - l - ' - m d x  is treated in the Appendix [they result from the 
norm condition (15)], and with the help of the substitution ~ = Ag we have 
to analyze the convergence properties of a polynomial equation of  infinite 
degree: 

c]c~ + c2o~2+ �9 �9 .+ c,~" = 1, n-~eo (16) 

which cannot be solved by algebraic means, and therefore we cannot use 
equation (16) for a proof  of the convergence of the expansion (10) with 
respect to equation (3). However, equation (16) provides additional infor- 
mation concerning equation (3) and the expansion (10): If  the existence of  
solutions of the form (10) is shown, then equation (16) induced by the L2 
norm yields a denumerably infinite set of A~ values for each possible k 
value, and therefore the degree of degeneracy of  the energy eigenvalue (13) 
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is infinite, whereas Ao itself may assume both signs (plus stands for soliton 
function and minus for antisoliton function). 

Using the recurrence formula (14), I now show the existence of  the 
pointwise convergence of  the expansion (10) with respect to equation (12). 
For this purpose, it is also convenient to consider some special cases, e.g., 
the linear Schr6dinger equation (h = 0), which cannot be satisfied by the 
expansion (10). Thus, by taking h ~ 0 the equation (12) assumes the form 

E k'=0 ~'" Ak,(Cosh kx)-(k'+'/2) _ kY.O,= Ak' (cosh kx)-(k'+l/2) 

/ 1 \ /  3 \  -(k'+2+~/2) h2k2 ~ a k , ~ k ' + ~ } ~ k ' + ~ )  (17) 
+ 2 m  k'=O 

The energy E is equated to E = - 1  �9 fi 2 �9 k2/ (4  �9 2m), and by the substitution 
= (cosh kx) -1, equation (17) yields 

Ak, _ ( k ' - 3 / 2 ) ( k ' -  1/2) .  ~2 (18) 
Ak,-2 k ' (k '+  1) 

It is the zero point (x = 0-~ ~ = 1) which causes the divergent behavior in 
the linear case, because for ~ = 1 and lim k '-~m equation (18) converges 
to 1, but outside the zero point ( x ~ 0 ,  ~ <  1) we obtain, according to 
equation (18), for l imk '~oo ,  Ak,/Ak,_2=~2<I, and therefore the 
expansion (8) converges in the case of the linear Schr6dinger equation 
(h =0)  absolutely, except at the zero point x =0.  However, due to the 
nonlinear contributions with h r 0 we are able to show that equation (12) 
exhibits pointwise convergence for -o0 _< x -< +oo, but this property results 
from the relation h < 0 (bound states) providing conditionally convergent 
series expansions. 

It should be pointed out that it is sufficient to consider the convergence 
properties of  equation (12) at the zero point ( x = 0 ,  ~ =  1), because the 
expansion 

~ =  ~, Ak,~ (k'+l/2) (19) 
k ' = O  

is convergent for ~ < 1 if it shows convergence for ~ = 1. The behavior of 
the expansion coefficients A, (n = 1, 2, 3, . . . )  in terms of Ao can be verified 
in Table I or formula (14): For each n (n = 1, 2 , . . . )  An consists of  odd 
powers of  Ao yielding throughout the same sign for each A, as that of Ao, 
but with regard to u (recall that u = h2k2 /2mA)  the same behavior is not 
true; so for all A, with odd n only odd powers of  u occur, whereas for all 
A, with even n the powers of  u are also even or, in other words, for h < 0 
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(bound states) we obtain an expansion with alternating sign, and therefore 
the Leibniz criterion of conditionally convergent series is applicable: 

oo 

condition 1: Y~ A.= ~ 1,4.1(-1)" (20) 
n = O  n = 0  

A second criterion for this kind of series is as follows: 

condition 2: lim A. ~ 0 (20a) 
n ~ o o  

Thus, it can be verified from the relation (14) that the condition (20a) can 
be satisfied if the norm amplitude A0 is finite, and even in the linear case 
the condition (20a) can be satisfied [equation (18)]. The third condition of 
the Leibniz criterion is somewhat more difficult, because it provides a band 
structure and stands in a close relationship to decision problems: 

condition 3: Iaol > Im,l > Ia21 > ' "  > I&l (20b) 

Thus, the relation (20b) with regard to the formation law (14) implies a 
recursive function: As a first step, one has to determine the inequalities 
such that Iaol > ]a,I > [a2l > Ia31 can be fulfilled for proper upper and lower 
bounds of u (or of k2). As a second step, one has to use these bounds of 
k 2 and to check whether they are already sufficient for arbitrary A, when 
we are passing to A,+~. If they are not generally suitable, then the procedure 
has to be repeated by taking into account A4, As, A6, etc. With respect to 
equations (12) and (14), the relations 

umin=�89 1/2] ( 0 < 6 )  
(20C) =�89 1/2] (6<g) U m a x  

A 2 
2mlXlh-22 [4 

or 

-(9-6)1/2]<k2<2mlAlA~[a"-(9-6)l/2] (20d) 
2h 2 

(0 < 6) ((5 < 9) 

turn out to be sufficient for the third Leibniz condition. 
The further procedures are similar to those of Ulmer (1988): Ao is only 

defined by the L2 norm, but in order to establish the pointwise convergence, 
we have to assume that the norm parameter Ao must also satisfy (20c) or 
(20d). However, the existence of the L2 norm cannot be shown in a direct 
manner, e.g., via equation (16), but it follows from the existence of a 
maximum norm M. and the L1 norm Ll(XI )') =I+~ [at-t[ dx<~, which them- 
selves can be derived from the pointwise convergence (see the Appendix): 
Let ~ ( x )  be a continuous mapping on E with the properties 

lira ~ ( x )  = 0, lira An -~ 0 ( n ~ )  (21) 
Ixl-~oo 
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and I_+~ [~PI dx < co and Mn also exist; then the inequality 

I*IV <-I*IIMo (22) 

holds. From this inequality it follows that 

f -~  (IV[/Mn)2 dx<- f~-o~ ([~l/Mn) dx (22a) 

is also true, yielding S+_~ 1~12 dx <- Mn ~+_~ I~'1 dx. With regard to equation 
(16), where we are only able to solve polynomial equations of finite order 
by numerical methods, e.g., M = 100, see Ulmer (1988) concerning the 
expansions (8) and (10), but these remarks do not touch the principal 
existence of solutions of (3). 

However, the present analysis has only considered a very interesting 
standard case, where Ao represents the norm amplitude, but equation (12) 
can also be discussed under some modified conditions: Assume Ao= 0; A1 
now assumes the role of the norm amplitude. Then the energy E is equated 
to E1 =-(h2k2/2m)(1/4+2)  with the additional condition that according 
to equation (12) the subsequent expansion coefficients A2, A3 , . . . ,  An are 
defined in terms of AI: AI~  A2~ ' "  �9 ~ An. The discussion of convergence 
properties is the same as already presented. It is also possible to start in 
equation (12) with an arbitrary As, then those expansion coefficients Ak, 
(k'</3) have to be put=-0, and equation (12) has to be discussed with 
regard to the expansion 

�9 ~ = ~ Ak,(cosh kx) -(2k'-~+1/2) (23) 
k'=~ 

This general case is also closely related to the standard case, where the 
expansion coefficients run from/3 = 0, and the norm is now defined in terms 
of A s. However, equation (16) holds in an analogous manner, and therefore 
each eigenfunction ~ exhibits an infinite degree of degeneracy: 

X!/'~ 4• ~ A ~ q •  -(2k'-~+1/2) 
k'=~ (24) 

M = 1 , 2 , 3 , . . . ;  / 3=0 ,1 ,2 ,3 , . . .  

The energy spectrum E~ according to equation (12) is given by 

E(/3) = -h2k2[/3(/3 + 1)+ 1/4]/2m 
(24a) 

2 2 2 
kma x >  k > kmi n 

Thus, the convergence properties are not different from those discussed in 
this analysis, and with the help of proper substitutions and estimations all 
convergence aspects can be reduced to those of the standard case. The same 
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fact is also true for the antisymmetric eigenfunctions presented in the next 
section. Some further remarks complete this section: 

1. The transition to three dimensions x -> x is also straightforward. We 
have to replace kx by k .  x in all relevant equations [e.g., equation (12)], 
and relation (24a) now reads 

E (~ ) = - h EkE[fl(fl Jr 1) + 1/4]12m 
(24b) 

k 2 = k 2 + k 2 + k 2 ; 2 2 2 kmax 2> k 2> kmi n 

2. The solution functions (24) obeying equation (3) can be made time 
dependent by Galilei-transformed wave functions 

* '  = exp[ imvx/ h - i(E + my2~2) t~ h ] ~ ( x -  vt) (25) 

where ~ '  obeys solely equation (4). 
3. There arises also the question of whether other kinds of powers, 

e.g., (cosh kx) -1/4, (cosh kx) -5/4, etc., can also satisfy equation (3). But this 
is really not true and may be readily verified by the general ansatz 

= ~ Ak,(cosh kx) -(k'+p) (26) 
k'=0 

which has to be substituted into equation (3) or (12). Because equation (3) 
has to be satisfied with respect to each power of (cosh kx) -(k'+~ on both 
sides (linear and nonlinear terms) and for arbitrary arguments - o o _  x -- +oo, 
it follows that p may assume either integer numbers or half-odd numbers: 

(linear terms) �9 (cosh kx) -k'-p 

~--- ( cosh  k x ) - 3 ~  (nonlinear terms) 

~ k ' + p  = 3 p + m  (m =p+q+r)  

k ' - m = 2 p ~ p = l / 2 ,  1, 3/2, 2 , . . .  

k ' -  m '- 1, 2, 3, 4 , . . .  

The first case is related to the already discussed expansions (6) and (8), 
whereas the second case refers to the expansions (10) and (11). Using the 
general ansatz (26), we should be able to show that p depends on the degree 
of nonlinearity. If  the lowest nonlinear term (besides the linear contribu- 
tions) is of the order 5, e.g., a nonlinear SchrSdinger equation of the form 

E ~  + 2 ~  A* = A l~]4xt t (27) 

then p could assume integer and half-odd values, but also values of the 
form odd/4. On the other hand, a nonlinearity of the form AII*I2* +  =lq,14,r 
would only permit p = integer and half-odd, but not odd/4. 
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3. THE SOLUTION SPECTRUM OF THE EXPANSION 
xp = ~ ' = o  Bk,(Cosh kx) -k'-3/2 sinh kx 

It has already been indicated by equation (11) that the expansion (10) 
is not the only possibility to satisfy equation (3) by L2-integrable wave 
functions. Thus, the antisymmetric set of wave functions given by equation 
(11) can be regarded as a modification of the expansion (8) or as a 
generalization of the solution (2), but the latter solution function is not 
square-integrable. Substituting the expansion (10) into equation (3), we 
obtain 

E ~ Bk,(Cosh kx)-k'-2/3 sin hkx 
k' =O 

h2k2~  ( 2 m  ~)2 + k~O,= Bk, - k ' +  (cosh kx) -k'-3/2 sinh kx 

h2k2 ~ Bk,(_k,_l_~(_k,_3~(coshkx)-k'-7/2sinhkx 
2m k'=O \ 2 ] \  2] 

= h ~ BpBqBr sinh kx. (cosh kx)-(9/2+P+q+r)(cosh2 kx -  1) (28) 
p,q,r=O 

It can be verified from equation (28) that both on the left-hand side (linear 
terms) and on the right-hand side (nonlinear contributions) we have to 
regard polynomials of the form (cosh kx) -m-3/2 sinh kx. Therefore, the 
analysis of equation (28) completely corresponds to that of equation (12), 
and the norm amplitude of the first eigenfunction now is Bo. Thus, the 
whole procedure of the preceding section is applicable: All the subsequent 
expansion coefficients/3, (n - 1) are defined in terms of Bo, which is itself 
only fixed by the LE-norm [e.g., equation (15)], and equation (16) also 
holds in an analogous fashion. The Bo dependence of B 1 is easy to see from 
equation (28), and is B1 = Ba/2u (u = hEk2/2mh). But it is also possible to 
put  Bk,=--O for k'<fl (fl =0, 1, 2, 3, . . . ) ;  then, from equation (28) follows 
the existence of a spectrum of eigenfunctions and eigenvalues, where each 
eigenfunction (/3 = 0, 1, 2, 3 , . . . )  additionally exhibits an infinite degree of 
degeneracy (M = 1, 2, 3, . . . ) :  

, ~ : ~ =  ~ B~,~(cosh kx) -(2k'-fl+3/2) sinh kx 
k '=f l  (29) 

/3 =0, 1 ,2 , . . . ;  M = 1 , 2 , . . .  

The energy spectrum related to the expansion (27) is given by 

h2k 2 
E(fl) = - ~ [ f l ( / 3  + 1) + 1/4] (30) 

2m 
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However, the boundaries of the permitted k 2 values are also given an 
inequality: 

k2in(fl) < k2< k2max(fl) (30a) 

This inequality is a consequence of the fact that for h < 0, by the determina- 
tion of Bk' in terms of B~ (k'>/3), a conditionally convergent series results 
and the conclusions according to the preceding section concerning the 
Leibniz criterion also hold. Equation (28) does not satisfy the linear 
Schr6dinger equation (h = 0), although it may appear that the antisymmetric 
expansion (11) does not provide significant difficulties at the zero point 
(x=0) ,  because the expansion (11) or (29) vanishes at x = 0 ,  whereas 
(cosh k~) -k'-l/2 is 1 at x = 0  (for all k'>-0). Defining 

fr = (cosh kx)-~-3/2 sinh kx (/3 = 0, 1, 2 . . . .  ) (31 ) 

we can verify that f o ( x )  exhibits a maximum at 

Xmax = [k[ -1at  cosh[+(/3 + 1/2)/( /3 + 3/2)] (31a) 

and a minimum at 

xmi. = ]k[-lar cosh[-(/3 + 1/2)/( /3 + 3/2)] (31b) 

but by taking lim/3 ~ oo, f~ is zero everywhere and produces a jump from 
-1 to +1 at the zero point, and this discontinuity is the reason that equation 
(28) can only be solved in the nonlinear case with ,~ < 0, yielding condi- 
tionally convergent expansions and a band structure for the corresponding 
k 2 values. However, there may be interesting aspects with regard to the 
antisymmetric L2-integrable wave functions given by the expansions (8) and 
(11), because these soliton functions represent dipole soliton functions: 
Thus, recently (Beaconsfield and Balanovski, 1984) dipole solitons have 
been considered in molecular biology (e.g., DNA replication), and it appears 
that the transport of dipole solitons in long molecular chains is an exciting 
concept in many problems of molecular electronics (Campbell and Peyrar, 
1983; Carter, 1981). A characteristic feature of the solution functions (10) 
and (11) is that they are related to an energy gap, as known by superconduc- 
tivity and other kinds of phase transitions [the equivalence between the 
Ginzburg-Landau theory (5) and equation (3) has already been pointed out]. 

The transition to the linear Schr~Sdinger equation is, as already mentioned, 
not possible by equations (12) and (28), and even by a linear combination 
of the expansions (10) and (11) we cannot pass to the linear case. However, 
by the ansatz 

~ = exp(ipx)  " [ ~ Aff:~(cosh kx) -(2k'-[3+1/2) 
k'=~ 

+ B~, • kx) -~2k'-~+3/2) sinh k x l  (32) 
d 
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the corresponding transition can be carried out, where the energy spectrum 
now is given by 

(h2k 2_ h2p2)[fl(fl + 1)+ 1/4]  (fi) = 

2m 

k2min < 2 2 2 (k - p  ) < kma x (30a) 

On the other hand, the ansatz (32) implies that we cannot distinguish 
between symmetric and antisymmetric functions, and therefore such a 
transition to the case A = 0 must be associated with a breaking of the 
symmetry. 

4. RELATIVISTIC EXTENSIONS 

With the help of slight modifications, the eigenfunctions (10) and (11) 
become solutions of a nonlinear Klein-Gordon equation 

m2r 2 
[],I, = - V - . +   1-t2,I, (33) 

In the same fashion as in the nonrelativistic case the problems of convergence 
also have to be solved with regard to equation (33), and here I only state 
briefly the most essential results: The relativistic analog of (10) is (M = 
1 , 2 , 3 , . . . ;  fl =0,  1 ,2 ,3 , . . . )  

~M~ ~ Aff ,~[cosh(ykx- ykvt] -(2k'-~+u2) (34) /3 ----- 
k'=r 

where the mass spectrum is given by [3' = 1/(1 -/)2/c2)1/2] 
tri2k 2 

m2=--CS--[fl(fl+l)+l/4], f l = 0 ,  1 , 2 , 3 , . . .  (35) 

and the relativistic analog of (11) now becomes 

~U~ ~ Bff~:[cosh(ykx- ~/kl)t] -(2k'-~+3/2) 
k'=/3 

x sinh( ykx - ykvt) (36) 

from which the mass spectrum is identical to that in (35): 

~ 2 k 2  
m2=--~-[fl(fl+l)+l/4], /3 =0, 1 , 2 , 3 , . . .  (37) 

Due to the conditionally convergent behavior of the expansions (34) and 
(36) we also obtain a band structure with regard to the mass spectrum: 

k2min(~)  < k 2 < k2max(fl) (38) 
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It is evident that the above-mentioned expansions cannot represent eigen- 
functions of the linear Klein-Gordon equation, but the corresponding 
transition to the ease 2, = 0 can be carried out if we admit that the symmetry 
may become broken, as expressed by the ansatz 

~ ~ • = e x p (  ipx - itot ) 

X ~ { A M •  -(2k'-13+1/2) 
k'=/3 

+ B ~ , •  - k y v t ) ]  -(2k'-~§ sinh(kyx - k y v t ) }  (39) 

The conditions according to the relations (35), (37) and (38) now read 

h 2 ( k 2 - 4 p Z + 4 w 2 / c  2) [ ~ 1] 
,.2_ 7 

(40) 
k2in(fl) < (k 2-4p2+4to2/c2) < k2ax(fl) 

With respect to equation (33), see Jackiw (1977) and Mielke (1981) for 
further information and references. 

It is also possible to solve nonlinear spinor equations using the 
expansions (34) and (36), but due to the spin-spin coupling inducing a 
difficult multiplet structure, the effort for the evaluation of nonlinear terms 
increases. Yet this increasing effort does not imply any significant difficulty, 
and all conclusions concerning the band structure properties and condi- 
tionally convergent expansions also hold in an appropriate form. Nonlinear 
spinor equations have been proposed by some authors (Heisenberg, 1966; 
Ivanenko, 1979; and references cited therein). As in the previous paper, I 
only consider a simplified model ease, e.g., a restriction of the four- 
component Dirac spinor �9 to (~1,0, 0, 0): 

O~ mc  
'I' + ;~'I'(~ y~ ' )  (41) 

Y Ox ~ -  h 

which takes the form (special ease: coordinates z and t) 

--')/zh Ogtt 1"~-~ ')It 0~I/1 = m c V l  + A h ~  (42)  
Oz c at  

Then, by the expansions 

~ M •  ~, [A~• k4ytt)]-(2k,-~+l/2)  1,~ -- TzZ - 
k'=~ 

+ B~' • yzz - k4 ytt)]-(2k'-t3+3/2) sinh(kl yzz - k4 ytt) (43) 
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we can solve equation (42) with the help of the principles as above, yielding 

and 

m = ( h / c ) ( ~  + 1 / 2 ) ( k ,  y~ + k 4 Tt) 

m 2 = (h2/c2)[fl(fl + 1) + 1/4][(kx 2 -  k])] 
(44) 

2 2 
kmin(~) < (kl - k]) < kZm~x(fl) (44a) 

The transition to the linear Dirac equation can only be performed by the 
modification according to the ansatz (39). These considerations may be a 
clear indication that perturbation methods, starting with the linear case, are 
often insufficient or they may fail. 

A P P E N D I X :  SOME COMPUTATIONAL ASPECTS 

With respect to the evaluation of the equation (16), which results from 
the introduction of the L2 norm, the following expressions have to be 
regarded: 11~tl2 = 1 implies 

Y~ AnA,,Sj+m+, = 1 (AI) 
n ~ O  r r t=0  

where $1+,,+, = ~+_~ dx (cosh kx) -~'+"+"). If 1 + m + n is odd, then it is given 
by 

1 - 3 �9 5 �9 �9 �9 ( p - 2 )  S l=kTr  
S p = S 1 2 . 4 . 6 . . . ( p _ l )  , ( p = l + m + n )  (A2) 

and if 1 + m + n is even, then it is determined by 

Sv=S2 2 " 4 " 6 " ' ' ( p - 2 )  $2 = 2  ( p = l + m + n )  (A3) 
3 . 5 . 7 - . -  ( p - l ) '  

In the preceding analysis, we have made use of the L1 norm to show the 
existence of  square-integrable solutions: I+_~ I*(x)l d x < ~  implies the 
evaluation of the following integrals: 

S1/2+m=I+~(coshkx)-l/2-mdx_ (m =0,  1 , 2 , . . . )  (A4) 

Thus, for even m, the integral (A4) can be brought to the form 

1 �9 5 . 9 -  ( 2 m - 3 )  ( A 5 )  
$1/2+,. = S1/2 3 �9 7 �9 11 �9 (2m - 1) 
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where S1/2 ~- 5.0696/k, and for odd  m we obtain 

3 �9 7 �9 11 �9 ( 2 m -  1) 
$3/2+m = $3/2 5 �9 9 �9 13 �9 (2m + 1) (A6) 

where $3/2 = 2.3964/k. Both $1/2 and $3/2 can be evaluated by the substitution 
cosh kx = 1/sin 2 q~, yielding integrals o f  the form 

4 fo ~/2 $1/2 =~ (1 -~sin 2 q~)-1/2 d~o 

S _ 4 f 
"~T/2 

3/2 - ~ J o sin2 q~ ( 1 + sin 2 q~ )-1/2 d~ 

With respect to convergence estimations, note that the following inequality 
holds:  

S1/2~$1~$3/2~$2~$5/2~'''~S(m+1)/2 ( m > 4 )  

and for rn~oe ,  we obtain lira S~+1)/2~0. 
As already shown in Section 2, the existence o f  the L2 norm of  the 

expansion (8) with regard to equat ion (3) and (and also to other equations,  
e.g., the nonl inear  K l e i n - G o r d o n  equation) can be reduced to the existence 
o f  a max imum norm M ,  and an La norm. 

Maximum Norm M.  

Assume Mn = max[~[;  then, for all expansions constructed on the basis 
(10) [a similar fact is also true for the expansion (11)] we have Mn = 
maxl ' I ' l  = IZk, Ak,I, because the set {(cosh kx) -k'} always exhibits a max imum 
at the zero point  x = 0  ( k ' -  > 1/2). In the nonl inear  case, the sum Y~k' Ak' 
holds, and therefore M, = !~k' ak,[ < ~ is also true, where Y~k' Ia~,l < ~ does  
not exist. 

With regard to the antisymmetric  expansion (11), the max imum is 
usually not  at the zero point,  but  at xm = k-lar c o s h [ ( k ' +  1/2)/(k'+3/2)], 
and therefore the existence o f  a maximum norm requires the evaluat ion o f  
a modified sum: 

Mn : k'=O ~ Bk , t (k '+  1/2)/(k'+3/2)]-(k'/2+3/4) I 

With c~ = ( 2 k ' +  1)/2, we obtain 
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L 1 -Norm 

The existence of 

Ll(aP)= f ~~176 dx < 

~ L I ( ~ )  = Iaos,/2+ a~s3/2+'"+ ~A,.S,.+1/21 <ce  (A7) 

follows from ]Y~k' Ak'l < O0, because we can write 

LI( ~ ) = S~/2[Ao + (ma S3/2 -[-''')51/1 '~-- S1/2Mn 
where S~1> Sn2 (for n 1 < n2) with Sn,-> 0 (n'-~ ~ ) .  Therefore we obtain 

-S1/=M. (A8) dx 
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